An experimental and numerical investigation on the influence of External Gas Recirculation on the HCCI auto-ignition process in an engine: thermal, diluting and chemical effects

نویسندگان

  • Hatim Machrafi
  • Simeon Cavadias
  • Philippe Guibert
چکیده

In order to contribute to the solution of controlling the auto-ignition in a Homogeneous Charge Compression Ignition (HCCI) engine, parameters linked to External Gas Recirculation (EGR) seem to be of particular interest. Experiments performed with EGR present some difficulties in interpreting results using only the diluting and thermal aspect of EGR. Lately, the chemical aspect of EGR is taken more into consideration, because this aspect causes a complex interaction with the dilution and thermal aspects of EGR. This paper studies the influence of EGR on the auto-ignition process and particularly the chemical aspect of EGR. The diluents present in EGR are simulated by N2 and CO2, with dilution factors going from 0 to 46 vol%. For the chemically active species that could be present in EGR, the species CO, NO and CH2O are used. The initial concentration in the inlet mixture of CO and NO is varied between 0 and 170 ppm, while that of CH2O alters between 0 and 1400 ppm. For the investigation of the effect of the chemical species on the auto-ignition, a fixed dilution factor of 23 vol% and a fixed EGR temperature of 70 °C are maintained. The inlet temperature is held at 70 °C, the equivalence ratios between 0.29 and 0.41 and the compression ratio at 10.2. The fuels used for the auto-ignition are n-heptane and PRF40. It appeared that CO, in the investigated domain, did not influence the ignition delays, while NO had two different effects. At concentrations up until 45 ppm, NO advanced the ignition delays for the PRF40 and at higher concentrations, the ignition delayed. The influence of NO on the auto-ignition of nheptane seemed to be insignificant, probably due to the higher burn rate of n-heptane. CH2O seemed to delay the ignition. The results suggested that especially the formation of OH radicals or their consumption by the chemical additives determine how the reactivity of the auto-ignition changed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Studying the Effect of Reformer Gas and Exhaust Gas Recirculation on Homogeneous Charge Compression Ignition Engine Operation

Combustion in homogeneous charge compression ignition (HCCI) engine is controlled auto ignition of well-mixed fuel, air and residual gas. Since onset of HCCI combustion depends on the auto ignition of fuel/air mixture, there is no direct control on the start of combustion process. Therefore, HCCI combustion becomes unstable rather easily especially at lower and higher engine load. Charge strati...

متن کامل

Computational study on the effects of exhaust gas recirculation on thermal and emission characteristics of HCCI diesel engine

In this paper, a computational in-cylinder analysis of HCCI diesel engine was carried out using IC Engine FORTE (ANSYS 18.2) software package. The analysis used pre-defined industry standard CHEMKIN format for specifying a chemical reaction mechanism during the combustion duration. The investigation was carried out for the effects of various EGR mass percentages on the thermal and emission char...

متن کامل

Effect of Hydrogen Addition to Natural Gas on Homogeneous Charge Compression Ignition Combustion Engines Performance and Emissions Using a Thermodynamic Simulation

The HCCI combustion process is initiated due to auto-ignition of fuel/air mixture which is dominated by chemical kinetics and therefore fuel composition has a significant effect on engine operation and a detailed reaction mechanism is essential to analysis HCCI combustion. A single zone-model permits to have a detailed chemical kinetics modeling for practical fuels. In this study a single-zone ...

متن کامل

Theoretical Investigation of Combustion Process in Dual Fuel Engines at Part Load Considering the Effect of Exhaust Gas Recirculation

The dual fuel engines at part loads inevitably suffer from lower thermal efficiency and higher carbon monoxide and unburned fuel emission. This work is carried out to investigate combustion characteristics of a dual fuel (dieselgas) engine at part loads, using a single zone combustion model with detailed chemical kinetics for combustion of natural gas fuel. The authors developed software in ...

متن کامل

Experimental Investigation on Hydrous Methanol Fueled HCCI Engine Using Spark Assisted Method

The present work investigates the performance and emission characteristics of hydrous methanol fuelled Homogeneous Charge Compression Ignition (HCCI) engine. In the present work a regular diesel engine has been modified to work as HCCI engine. Hydrous methanol is used with 15% water content in this HCCI engine and its performance and emission behavior is documented. A spark plug is used for ass...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011